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In this paper, an active vibration control of a translating tensioned string with the use of an
electro-hydraulic servo mechanism at the right boundary is investigated. The equations of
motion of the string are derived by using Hamilton’s principle for the systems with changing
mass. The control objective is to suppress the transverse vibrations of the string via a right-
boundary control. An energy-based right-boundary control law, generating a specific current
input to the servo-valve, is derived. It is revealed that a time-varying boundary force, as a
function of the slope of the string at the right end and a suitably chosen damping coefficient of
the actuator, can successfully suppress the transverse vibrations. The exponential stability of the
closed loop system is proved. The effectiveness of the proposed control law is demonstrated via
simulations.
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1. Introduction

The control problems of axially moving sys-
tems occur in various engineering areas: For
example, the strips in thin metal-sheet production
lines, the cables, belts, and chains in power trans-
mission lines, the magnetic tapes in recorders, the
band saws, etc. The dynamics of these systems can
be differently modeled depending on the length,
flexibility, and control objectives of the system
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considered. For instance, the dynamics of a mov-
ing cable of an elevator can be described by a
string equation, but that of a rubber belt in the
traditional mill can be well represented by a belt
equation. The difference between a string and a
belt lies in whether the longitudinal elongation is
considered or not.

In axially moving systems, the transverse (la-
teral) vibration of the moving material often
causes a serious problem in achieving good qual-
ity. It is also known that these vibrations are
often caused by the eccentricity of a pulley, and/
or an irregular speed of the driving motor, and/
or a non-uniform material property, and/or en-
vironmental disturbances. Since the quality re-
quirement as well as the productivity in a pro-
duction line is getting stricter, an active or a
semi-active vibration control is nowadays se-
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riously considered.

Diverse results on the dynamics, stability, and/
or active/passive controls for axially moving
systems have appeared in the literature (Carrier,
1945 ; Bapat and Srinivasan, 1967 ; Wickert
and Mote, 1990 ; Wickert, 1992 ; Oshima et al.,
1997 ; Pellicano and Zirilli, 1998 ; Shahruz, 1998 ;
2000 ; Osstveen and Curtain, 2000 ; Kim and Yoo,
2002 ; Lee, 2002 ; Sohn et al., 2002 ; Kim et al.,
2002 ; Matsuno et al., 2002 ; Qu, 2002 ; Choi et al.,
2004 ; Hong et al., 2003 ; 2004 ; Yang et al., 2004a,
b). Particularly, Mote (1965) modeled the dyna-
mics of a band saw, as an axially moving string,
and investigated its instability in relation to the
moving speed and excitation frequency of the
saw. Wickert and Mote (1988) reported a passive
control strategy, by changing its damping and
stiffness, for axially moving continua. Morgul
(1992) investigated a boundary control law that
suppresses the lateral vibration of an Euler-
Bernoulli beam, but in his work the beam itself
was not axially moving. Laousy et al.(1996)
investigated a boundary feedback stabilization
method for a rotating body-beam system. Lee and
Mote (1996) derived an optimal boundary force
control law that dissipates the vibration energy of
an axially moving string. Fung et al.(1999a, b)
reported boundary control laws for linear and
nonlinear strings, in which the dynamics of the
actuator has been incorporated in the control law
design. An optimal control and an adaptive con-
trol of an axially moving string were investigat-
ed in (Fung et al., 2002a, b), respectively. For a
translating linear beam, Lee and Mote (1999)
analyzed the wave characteristics of the beam and
derived optimal boundary damping laws as a
function of linear velocity, linear slope, and linear
force. Li and Rahn (2000) investigated an adap-
tive vibration control for an axially moving linear
beam by splitting the moving part into two spans,
a controlled span and an uncontrolled span. Li
et al.(2002) applied the control strategy of Li
and Rahn (2000) to a linear string, providing
experimental results. Fard and Sagatun (2001)
focused on the exponential stabilization of a
nonlinear beam, not axially moving, by a boun-
dary control.

The contributions of this paper are the follow-
ing. First, the actuator dynamics of an axially
moving string have been incorporated in the con-
trol law design. The derived control law gives a
current input to the hydraulic actuator. Second,
the derived boundary control law requires the
feedback of two physical quantities: the string
slope at the right boundary and the damping
coefficient of the actuator. The string slope is
measured, but the damping coefficient is a design
parameter in general. Hence, once the damping
coefficient is determined in the actuator design
stage, the control law depends only on the slope
measurement. Therefore, the use of a slope sensor
enables the implementation of the control law.
Finally, the exponential stability of the closed
loop system has been established.

The paper is structured as follows: In Sec-
tion 2, the linear string equations of motion are
derived by using Hamilton’s principle for the
systems of changing mass. The electro-hydraulic
actuator dynamics are also given. In Section 3, a
stabilizing boundary control law that suppresses
the transverse vibrations of the string is derived.
The exponential stability of the closed loop sys-
tem is proved in Section 4. In Section 5, the im-
plementation issues of the derived control law
and simulation results are discussed. Finally, Sec-
tion 6 concludes the paper.

2. Equations of Motion

Figure 1 shows a schematic of the plant for
analyzing dynamics and for deriving a boundary
control law. The string is assumed to travel at a
constant speed. The left boundary is fixed, that is,
the boundary itself does not have any vertical
(transversal) movement, but it allows the string
to move longitudinally. However, the right boun-
dary permits a transversal movement of the string
under a control force.

Let ¢ be the time, x be the spatial coordinate
along the longitude of motion, v be the axial
speed of the string, w(x, ¢) be the transversal
displacement of the string at spatial coordinate
x and time ¢, and L be the length of the string.
Then, the absolute velocity of the string at spatial
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Fig. 1 An axially moving string under the right

boundary control force

coordinate x is given by

o dw(x, t) .
v—vl—l-idt ] (1)

=vi+{w:(x, t) +owx(x, £)}]

where (+),=ad(+)/0t and (+)x=0(+)/0x denote
the partial derivatives in time £ and spatial coor-
dinate x, respectively. Now, to derive the equa-
tions of motion, Hamilton’s principle for the sys-
tems of changing mass (Mclver, 1973) is utilized
as follows :

8 [T —Ut Woet Wenddt=0 ()

where T is the kinetic energy, U is the strain
energy, Wp.c is the non-conservative work, W;.;
is the virtual momentum transport at the right
boundary (no variations at the left boundary).
The kinetic energy is

T:%/L{ V3 (we+vwx) 2 }dx
’ (3)
3 mw? (L. 1)

where o is the mass per unit volume (material
density), A is the cross—sectional area, m is the

mass of the actuator, that is, of the touch roll in
Fig. 1. The potential energy is

L
U= fo Toexdx (4)

where Tp is a constant axial tension of the strip,

&x is the strain. The energy in (4) is due to the
strip tension. If the infinitesimal distance dx is
replaced by an infinitesimal length ds, the strain
&x can be approximated as ex=w?2/2 (Benaroya,
1998). Then (4) is rewritten as

L
U:%A widx (5)

Now, the variations of (3) and (5), respectively,
are

8T:pA’£L(wt+vwx) (Sw.+v0wx) dx
+mw.dw: (L, t)

(6)

SU=T, [ widwsdx (7)

Also, the variations of the non-conservative work
and the virtual momentum transport at the right
boundary are

OWa.e.=Fc(t) Sw (L, t)

Cdao(L DowL. Y

SWro.=—pAv{w: (L, 2)

+owx (L, t)}ow (L, t) ©)

where d, is the damping coefficient of the actua-
tor, and F.(#) is the control force.

The substitution of (6)-(9) into (2) yields the
equations of motion in the following form.

AW +20Avws: — (To— 0 AV wxx=0 (10)
where boundary conditions are

w(0, t) =0 (11)

mwe (L, t) +daw: (L, t)

¥ Towe(L. 1) =F(t) (12)

Note that in (10), the first, second, and third
terms represent the local, Coriolis, and centripetal
accelerations, respectively. Note also that (10) is
a partial differential equation representing the
transverse motion, whereas (12) is an ordinary
differential equation representing the actuator
dynamics at the right boundary that is coupled
with the string tension and the control force.
Mote (1965) revealed that the string moving
speed v, to avoid a divergence of the solution,
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Table 1 The plant parameters used in simulations

Symbols Definitions Values
A cross—sectional area |1.4X0.0045 [m?]
L length of the string 20 [m]
To tension of the string 9,800 [kN]
m mass of the actuator 25 [kg]
v string moving speed 1.8 [m/s]
Pe) mass per unit volume | 7,850 [kg/m?]
da damping coefficient 50 [Ns/m]

should be smaller than some critical speed given
by

Ty
oA (13)

Hence, the satisfaction of (13) is also assumed

0<v<ver=

in this paper. If using the parameters in Table 1,
ver=+ To/ 0A=445.15 m/sec is given.

To actively control the transverse vibrations, a
hydraulic touch roll is attached to the right end
of the string. The two rollers of the touch roll
can rotate freely, which allows the string to move
freely in the axial direction without friction. But,
the contact between the string and the rollers is
tight enough, so that the displacement of the
roller is considered as the displacement of the
string. As seen in Fig. 1, the control input to the
system is the current to the electro—hydraulic
servo-valve. Hence, the dynamics of the hydraulic
servo-valve as well as the dynamics of the touch
roll together have to be included in the control
system design (Alleyne and Liu, 2000 ; Araki and
Taguchi, 2003 ; Goodwin and Quevedo, 2003).

Regarding the touch roll as a second order
mass—damper system and including only the sec-
ond order dynamics of the hydraulic system, the
dynamics of the electro-hydraulic servo system is

given by
X1=X2 (14>
X2:i(Aa,X3—daX2_ Towx) (15)
Xs=—ax2— Bxs+ (yv Ps— sgn(xg) xs ) xa (16)
tetxt By (17)
where

a:4AaBe/ I/t» B:4Ctm82/lft
7=4Cafewe/ (Viios)

x1i=w (L, t) is the displacement of the actuator,

(18)

xe=w, (L, t) is the velocity of the actuator, x3=
P, is the load pressure, x4=x, is the servo-valve
position, % is the input current to the servo-valve,
Ps is the supply pressure, B, is the effective bulk
modulus, V; is the actuator total volume, Cu is
the coefficient of leakage, Cy4 is the discharge
coefficient, wg is the spool valve area gradient,
Oy is the fluid density, 7 is the time constant, K
is a gain of the valve, and finally A, is the cross-
section area of the actuator.

3. Boundary Control Law

In this section, a right boundary control law
that suppresses the transverse vibration of the
string governed by (10)-(12) and (14)-(17) is
derived. The following lemmas are first stated.

Lemma 1: The mechanical energy of the string
L L
I/Stn‘ng:%’/(; (wt+vwx)2dx+%/o widx (19)

and the functional V defined by
V: I/String+ Vs (20)
are equivalent, where

L
VB=pA8/; xwx(we+vws) dx (21)

That is, there exists a constant & >0 such that

(1—=C) Vitring< V<(1+C1) Vsrring  (22)
where 0< G < 1.
Proof :

L

VB:pABL’ K (Wit vwy) dx

gm%uLwidXJrf(wﬁvwx)zdx}

:8L{%/0L(Wt+UWx>2dx]+8L (%%fwidx)uw
< SL'maX{ 1, %} Vstring= C1 Vstring

where
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C1:8L-max{1, %} >0 (24)

Hence, the following holds :
- Cl Vstringé I/VS Cl Vstring <25>
By adding Visuing to the both sides of (25), (25)

becomes

(1=C1) 1 Vstring< V< (1+C1) Vstring  (26)

In order for Visring and V to be equivalent, 1—
C:>0 is needed. From (24),

1

L-max{l, %}

0<o6<

(27)

needs to be satisfied. Lemma 1 is proved. H

Let the errors of the load pressure and the
servo-valve position from their desired values,
respectively, be defined by

€3 X3 X3desired <28>
€4 X4 X4desired (29>

Now, with Lemma 1, the following Lyapunov
function candidate, which is basically equivalent
to the total mechanical energy of the string and
actuator, is proposed as

|4 ( t) = V+ Vactuator <3O>

where

Vieuaior="3 {wi (L, 1)+ (0+L) we(L, D)}’
L, (31)
‘|‘7 €3+7 Ce, ¢>0
It is noted that because the considered system
involves a mass flow entering in and out at the
boundaries, the net change of the total energy is
the sum of the change in the control volume (i.e.,
%%tring) and the energy flux at the boundaries
(i.e., v Vstring 1§) . The time derivative of (30) can
be derived by applying the Reynolds transport
theorem as

d

ar (H=Vi+oVil§ (32)

First, the total derivative (or the material deri-
vative) of (30) is evaluated. The time derivative

of the first term in (30), V/, becomes

dop_dy, . d
% <t> - dt I/Strmg+ dl‘ VB (33>
By using (10),

% I/String ( t) = I/(String)t + v I/v(String)x
can be evaluated

L
Vism'ng),:/o‘ pA(Wt+UWx> (we+vws) dx
L
-I—_£ Towsxwxedx

ZfOL (we+vwx) {( To— pAV®) W }dx

—_[pAvth(wt-l-vwx) dx (34a)

L
+ fo Towxwxedx

=(To—pAv*) [wxw:]§
v(Th—pAv?)

POV ) 20 [

* 2

vV (string), =0 _ﬁ LpA (we+vwx) (wxe + VW) dx

L
+v _/0- Towxwxxdx
=AY (gt v 0+ 2L ]
(34b)
Hence,
Ti—pAv
Vo= (oo [wsanJi+ " P [
00 [+ (o))
+20 L

=Towx(L, ) we (L, H) +oT[wi]§

Also, for the second term in (33), the following
hold :

L
V(B)t:pAS/ Xwaxe (Wi +vwx) dx
. (36a)
+,0A6/(; XWx (Wi + vwxe) dx

L
UI/(mX:vaa/O wx (W + vwx) dx
+1},0A6'/0.LxWxx(Wt+UWx) dx (36b)

L
+ va&_/(; XWx(Wxe T VWx) dx
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Therefore,

d L
T Vg—vaS/O (X Wt T XWe W T Wrt0:) dx

L L
+020A0 /o XWxWxxdx +0AS /o XWX )
37
+6 /0 wax(pAwﬂ +20Avwit + 0 Av*we) dx

2 L 2
+v°0A8 ) wydX

Lemma 2: Because w(x, #) should satisfy the
boundary condition (11), the following relations

hold :

L L
/(; xthwtde% w?(L, t) 7;/0 widx (38a)

L
/ XWxWxdX L
0 2

w2 (L, t) *%fowadx (38b)

L
/(; (XWxeWx T X WaxtWr + Wxtw) dx

=[xwxw:)§=Lwx(L, t)w:(L, t)

(38c)

Proof : The integration by parts gives the above
equalities immediately. Il
Now, by using Lemma 2, (33) is modified as

©7(1) = Towe L. ) we(L. 1) + T[S
+0AvSLwx(L, t) w:(L, t)

J%(pAzﬂaLJr TooL) uZ (L, ¢)

(39)
2 L
a pA” 0 f uldxA "AfL wi (L, t)
pél@ widx —ﬁo widx

Also, the time derivative of (31) becomes

L Vo= we(L. 1) +$(0+0L) il L, 1)

{muwe(L, £) +9m(v+0L) wae (L, 1))}
+ 83é3+ €4é4

40)

Let the right boundary control force F,(#) be
Fe(t)=—ym(v+06L) wx (L, t) (41)

where ¥ is the control gain. Using (12), (40) can
be rewritten as

Y wr=(0e(L, )+ 9 (0+8L) il L. 1)

{ dawt Towx(L t)}+€3€3+€4€4
{

{-

w(L, 1) +¢ (v+6L) wx(L, 1))

daw: (L, ) = Tow:(L, 1)} (42)
+es(axat Brat vy Ps—sgn (Xs) X3 Xedesired
+ 7 Ps—sgn (x4) X3 €4— Fadesirea)

4
v K
+ €4< __T +—T u _X4desi'red>

The desired position of the servo-valve, Xaesired,
is defined as

1

v/ Ps—sgn (x4) x4 (43)
{ — (ax2— Bxs) + %X3aesirea—s3e3 }

Xadesired =

where s3>>0. The substitution of (43) into (42)
yields :

d

WVActuator:{ We (L, l‘) +¢<U+6L> wX<La t)}

{—daw. (L, t) — Towx(L, t)}
—sse5+ 7y Ps—sgn (x4) x3ese4

X4 K 5
+es < _7‘|‘7 u_X4desired>

(44)

Finally, from (39) and (44
of (30) becomes

(‘;’t %( V4 Viesator) < Tows (L, ) wie (L, 1)

+oTolwils+pAvdLuwy(L, H)w.(L, 1)
41 (pAPSL+ TdL) k(L. )

2 L
+2ATD [ e B0 1 )

p’;w[wﬁdx 62TOJ£LWJZ¢:dx7daW§<L7 )
_da¢<v+6L) Wx<L, t) wt(L, t)
—Tow:(L, ) we(L, t) = Top (0+0L) wi(L, t)

—83€§‘|‘ 7«/‘P5—Sgn (M) X3 €364

X4 K .
+e ( *7+7 u *Mmired)

), the total derivative

140

(45)

Now, the main theorem of this paper is stated
as follows :

Theorem : Consider the system (10)-(12) and
(14) (17). Let the right boundary control force
F:(t) be given by F.(¢t)=—9ym(v+SL) wx
(L, t), where ¥ is the control gain. Let the
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damping coefficient of the actuator d, in (12) be
given by

pASL  pASL } (46

daZmaX{ B s ¢<1+8L/1))

Assume further that the following conditions are
satisfied :

1— ¥ <0, pAv*— TH<0
(47)

and S 0AV+ T~ Ty <0
Then, the closed loop system with the following
control input is exponentially stable :

u= %[ < L;>+X4desmd_84€4_7*/mes}
T
K

|: + X udesired — S4 (x v~ X z;desimd) (48>

— vy Ps—sgn (%) P. (P.— Praesired) }

where 7and K are the time constant and the gain
of the servo-valve, respectively,

PLdemFW (49)
P - 1
vdesired™  —m
7y Ps—sgn (x,) P, (50)

X{awt(L, t) +[))PL*PLdesz‘red*S3(PL*PLdesired)}

PLdesired: *M (51>
a/:4AaBe/ Ve, B :4Ctmﬁe/ Vi, 7:4Cdﬂewg/

(Vt@), and S3, $4>0.

Proof : The proof is given in Section 4. ll

6) and (47) is
immediately seen : Specifically, if using the para-

Remark : The satisfaction of (4

meter values in Table 1, ¢ is first calculated from
(27) as follows :

1

7,850 X1.4X0.0045 }
9,800,000

o< =0.05

20-max{ 1,

So, let §=0.04, see (Rao, 1990). Then, from (46),
d, is calculated as follows :

7.850X 1.4X0.0045 X0.04X20 7850 X 1.4X0.0045 X0.04 %20
2 © o 100(140.04%20/18)
>max{19.782, 02739}

d>max

where the control gain =100 has been assumed.
Also, for (47)

0AV*— Ty=17.850 X 1.4 X0.0045 X 1.8°—9,800
=-—9,639.7<0

% AV + To— Toy

=%><7,850 X 1.4 X0.0045 X 1.82

+9,800,000—9,800,000 X 100
=-—970,199,919.9<0

Hence, all the conditions in the Theorem are well
satisfied.

4. Stability Analysis

In this section, the exponential stability of the
string system under control input (41) and dam-
ping coefficient (46) is proved. Note that the time
(45)
under the conditions of the Theorem) is expressed
by

derivative of the Lyapunov function (i.e.,

d

%V(t)éX—FY (52)
where
_ [ pAVL  pASL\ ,
X=(yoiay T L 5

—%< To— 0 AV w3

Y= pAS/‘

At first, X is

(L ) —sd——d

_ 9T f widx  (54)

_ pAviL _pA(WJ 2 _ﬂ — oAk _ z_lz
- <—¢/(v+5l> = )mL, 1) 2(To oA i (L, f) - el d
[ okl phL

Lo 21,

(Ty-pAd" dm(v+0L) " (L, ) *233'; a-—~a

omlp+oL) 1% (55)

<-min(G, Gy, G, Cs){mwf(L, £)+gmlv+oL) "t (L, 1) +7e§+5 ef]

< G, G, G, O+l 7
=-min(Cy G, Ci Co> Vitatnr
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where,
C :L< eAvéL pA6L>
“m\ y(v+6L) 2
_ oL _ 2
CS_2I/I7’VL(U+5L)2 (Th=pAv’)
2
Cs=2s3 and C5=7
And, Yis

r=-288 [*ytin-80 [*ygy

= aT"[widx pAa[w?dx anf“}idx

4
<=0 ot poe [ wtdx—ﬂ [ e
<- ang[ whdy—min(Cs, C7)(£ w?dxwzﬁ widx) (56)

<- 5T0£ widy—min(Cs, Ci)* 2£ (wetviy) *dx

<-min(Cs, G, C) (7% widﬁ?l[ (wtﬂ)w;c)za’x)
:—min(Ce, C7, CI[) Vstring

where Ce="—"7— 'OAa Cr= 87;), CHZQ. By using
4y 2
(20), (56) is expressed as
y<-minCe Cu Gy v (57

1+

Then, from (55) and (57
the Lyapunov function (52) can be expressed as

), the time derivative of

Ly () <X+Y<-min(Cs Co Cu C3) Vicuar
in(Cs, Cy, Cs 58
——mm(l‘;a’ ) Vet ) )
==V(¢)
where

A=min < Cz, Cs, C4, Cs, 1 CG C7 CS >

+C 1+CG 1+ G

Hence, the Lyapunov functional is decaying ex-
ponentially in time. This implies that the total
mechanical energy (19) of the string decays ex-
ponentially in time, which again implies that all
the state variables decay exponentially in time.
Hence, the closed loop system is exponentially
stable.

5. Implementation and Simulations
The implementation of (41) and (46) requires
two things : the generation of control force Fe(¢)
and the satisfaction of a damping coefficient d.
Because the satisfaction of d, is related to the
design problem of a hydraulic actuator, it must be
pre-planned. Note that & should satisfy (27). Be-
cause all terms in the right- and left-hand sides of
(27) are already known, the range of the damping
coefficient can be achieved. The implementation
of wx:(L, ¢) in (41) can be achieved by back-
wards differencing of wy (L, ) measured at each
step.

To demonstrate the performance of the closed
loop system, computer simulations using the finite
difference scheme have been performed. The plant
parameters used for simulations are gathered in
Table 1. And, the used servo-valve parameters are
collected in Table 2. The higher d is, the faster
the exponential decay is. The use of d;=50 Ns/m
is recommended.

Let the initial conditions be

w(x, 0)=sin(3zx) and w:(x, 0)=0 (59)

Now, simulations using §=0.04, d,=50, =100,
and (59) have been performed for 5 seconds. Fig-
ure 2 shows the transverse displacement at x =
L/4, L/2, 3L/4, and L =20 m, respectively. Fig-
ure 3 shows the applied control force and its
desired value at x=L, respectively. As shown in
Fig. 2, the lateral vibration has been suppressed

Table 2 The servo-valve and design parameters
used in simulations

Symbols Definitions Values
Ps load pressure 1.0344 X 107 [Pa]
Aa actuator ram area | 3.2673X107* [m?]
a 4A B/ Ve 1.513X 10" [N/m?]
4CmfBe/ V 1.0 [1/s]
7 |4CaBewe/ (Vidos) 8.0x10°
S3 positive constant 2,000
S positive constant 500
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within 3 seconds. Figure 4 shows the exponential

decay of the total mechanical energy of the

closed- loop system, whereas the energy without

control remains at the same level in time.

3
2t 1 2t 4
= = Uncontroled
S & P
S , Uncontroled - ~
29 4 = g o
: ' 5
. A 2 l Alh '
-~ f 1 T | oot P (PRt N - A { NP PR A Db Pt P SR T Wl
e s s ol s
< | R - £ 3 f \ \ B %
% atb N Cortroled 4 3 b \ ' 3 3
3 2 * Controlled
o o]
2t 4 2t :
3 R : i R . i i a .
0 05 1 1§ 2 25 3 35 & a6 & 0 05 1 16 2 25 3 35 & 26 &
Nime (sec) Time (sec]
(a) w(L/4, t) (b) w(L/2, t)
3 v y - T T T r - 3
2 1 2t 4
E E
= Uncontrolled ; L 4
< 1} B a
= e - ) é—‘ Uncontrolled
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6. Conclusions

This paper investigated a boundary control law
for suppressing the transverse vibration of an
axially moving string. Because the control law
was derived for a general axially moving linear
string equation, it can be applied to various engi-
neering problems, for instance, a moving steel
strip in the zinc galvanizing line, a thin metal-
wire production line, etc. Achieving the exponen-
tial stability of the closed-loop system by using
one sensor and one actuator is the main contri-
bution of the proposed algorithm.
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